$A= \dfrac{1}{1.2.3} + \dfrac{1}{2.3.4} + .... + \dfrac{1}{198.199.200}$
$⇔2A=\dfrac{2}{1.2.3} + \dfrac{2}{2.3.4} + .... + \dfrac{2}{198.199.200}$
$⇔2A = \dfrac{1}{1.2} - \dfrac{1}{2.3} + \dfrac{1}{2.3} - \dfrac{1}{3.4} + ..... + \dfrac{1}{198.199} - \dfrac{1}{199.200}$
$⇔ 2A = \dfrac{1}{2} - \dfrac{1}{39800}$
$⇔ 2A = \dfrac{19899}{39800}$
$⇔ A = \dfrac{19899}{79600}$