Tính B=x^5=1/x^5 biết x^2+1/x^2=7
Cho x>0 t/m x2+\(\dfrac{1}{x^2}\)=7
Tính B = x5+ \(\dfrac{1}{x^5}\)
Ta có:
\(x^2+\dfrac{1}{x^2}=7\)
\(\Rightarrow\left(x+\dfrac{1}{x}\right)^2-2=7\)
\(\Rightarrow\left(x+\dfrac{1}{x}\right)^2=9\)
\(\Rightarrow x+\dfrac{1}{x}=3\) ( Vì x > 0 )
\(\Rightarrow\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Rightarrow x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=27\)
\(\Rightarrow x^3+\dfrac{1}{x^3}+3.3=27\)
\(\Rightarrow x^3+\dfrac{1}{x^3}=18\)
Ta lại có:\(\left(x+\dfrac{1}{x}\right)\left(x^4+\dfrac{1}{x^4}\right)=x^5+x^3+\dfrac{1}{x^3}+\dfrac{1}{x^5}=x^5+\dfrac{1}{x^5}+18\)
Mặt khác:
\(\left(x+\dfrac{1}{x}\right)\left(x^4+\dfrac{1}{x^4}\right)=\left(x+\dfrac{1}{x}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)^2-2\right]\)
\(=\left(x+\dfrac{1}{x}\right)\left(7^2-2\right)\)
\(=3.47=141\)
\(\Rightarrow x^5+\dfrac{1}{x^5}+18=141\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=123\)
Tìm x, y để x^2 + 5y^2 - 4xy + 2y = 3 đạt GTLN
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Tìm GTNN của biểu thức A=x^2-2x+2018/x
Tìm minA = \(\dfrac{x^2-2x+2018}{x}\)
Tính GTBT M=x^2-2xy/x^2+y^2 biết 3x - y = 3z và 2x + y = 7z
Cho 3x - y = 3z và 2x + y = 7z . Tính giá trị của biểu thức : M = \(\dfrac{x^2-2xy}{x^2+y^2}\) ( x # 0 ; y # 0 )
Tính M=1/x^2+1/y^2+1/z^2 biết x+y+z=xyz và 1/x=1/y+1/z=3
cho x,y,z khác 0 thỏa mãn:
x+y+z=xyz và\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
tính M=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Tìm x để x^4+x^3+x+1/x^4-x^3+2x^2-x+1=0
Tìm giá trị của x để các phân thức sau bằng 0:
a,\(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\) b,\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
Giải phương trình 4x^2-25+k^2+4kx=0 với k=0
Cho phương trình (ẩn x):\(4x^2-25+k^2+4kx=0\)
a) Giải pt với k=0
b) Giải pt với k =-3
c) TÌm các gia trị của k để pt nhận x=-2 làm nghiệm
Rút gọn biểu thức P=x^2+y^2=z^2/(ax+by+cz)^2 biết x/a=y/b=z/c
Cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\). Rút gọn \(P=\dfrac{x^2+y^2+z^2}{\left(ã+by+cz\right)^2}\)
Tìm điều kiện xác định và rút gọn P=x+3/x+1+6/x^2-x-2
\(1,P=\dfrac{x+3}{x+1}+\dfrac{6}{x^2-x-2}\)
a, Tìm điều kiện xác định và rút gọn P.
b, x=3. tính P
2, Cho tam giác ABC có 3 góc nhọn và H là trực tâm. Đường thẳng vuông góc với AB, kẻ từ B cắt đường thẳng vuông góc với AC, kẻ từ C tại D.
a, CM: BHCD là hình bình hành.
b, gọi M là trung diểm của BC, O là trung điểm của AD. CM: 2OM=AH
3,
a,Rút gọn bt sau: \(\left(a+b\right)^2-a\left(a+2b\right)\)
b, phân tích đa thức: \(x^3+3\left(x-2\right)-4\) thành nhân tử
Rút gọn S=(x-3+1/x-1):(x-1-1/x-1)
S=\(\left(x-3+\dfrac{1}{x-1}\right):\left(x-1-\dfrac{1}{x-1}\right)\)
a) Rút gọn
b)Tìm giá trị x khi S>5
c) Tìm giá trị của S khi x=\(\sqrt{12+\sqrt{140}}\)
d) Tìm x thuộc Z để S thuộc Z
Chứng minh a^2+b^2+c^2>=ab+bc+ca
Cho a b c là 3 số tùy ý . Chứng minh bất đẳng thức
\(a^2+b^2+c^2\ge ab+bc+ca\\ \)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến