Đặt A = $2^{}$ + $2^{2}$ + $2^{3}$ +...+ $2^{2020}$
A = $2^{}$ + $2^{2}$ + $2^{3}$ +...+ $2^{2020}$
⇒$2A^{}$ = $2^{2}$ + $2^{3}$ + $2^{4}$ + ... + $2^{2011}$
⇒$2A-A^{}$ = ( $2^{2}$ + $2^{3}$ + $2^{4}$ + ... + $2^{2011}$ ) - ( $2^{}$ + $2^{2}$ + $2^{3}$ +...+ $2^{2020}$ )
⇒$A^{}$ = $2^{2021}$ $-2^{}$