$\displaystyle \begin{array}{{>{\displaystyle}l}} 26.\\ y=\frac{x^{2} -2x+3}{\sqrt{x^{2} +2x}} =\frac{x^{2} +2x-4x+3}{\sqrt{x^{2} +2x}} =\sqrt{x^{2} +2x} +\frac{3-4x}{\sqrt{x^{2} +2x}}\\ y'=\frac{2x+2}{2\sqrt{x^{2} +2x}} +\frac{-4\sqrt{x^{2} +2x} -\frac{2x+2}{2\sqrt{x^{2} +2x}} .( 3-4x)}{x^{2} +2x}\\ y'=\frac{x+1}{\sqrt{x^{2} +2x}} +\frac{-4\left( x^{2} +2x\right) -( x+1)( 3-4x)}{\left( x^{2} +2x\right)\sqrt{x^{2} +2x}}\\ y'=\frac{x+1}{\sqrt{x^{2} +2x}} +\frac{-9x-3}{\left( x^{2} +2x\right)\sqrt{x^{2} +2x}}\\ 30.\ \\ y=\frac{2-\sqrt{x}}{1+4\sqrt{x}}\\ y'=\frac{\frac{-1}{2\sqrt{x}}\left( 1+4\sqrt{x}\right) -\frac{2}{\sqrt{x}}\left( 2-\sqrt{x}\right)}{\left( 1+4\sqrt{x}\right)^{2}} =\frac{\frac{-1}{\sqrt{x}}\left(\frac{1}{2} +2\sqrt{x} -4+2\sqrt{x}\right)}{\left( 1+4\sqrt{x}\right)^{2}}\\ y'=\frac{\frac{7}{2} -4\sqrt{x}}{\left( 1+4\sqrt{x}\right)^{2}\sqrt{x}} \end{array}$