Đáp án đúng: A
Giải chi tiết:\(\begin{array}{l}\,f\left( x \right) = - 5{x^4} + {x^2} - 2x + 6\\\,\,\,\,\,g\left( x \right) = - 5{x^4} + {x^3} + 3{x^2} - 3\\f\left( x \right) + g\left( x \right) = \left( { - 5{x^4} + {x^2} - 2x + 6} \right) + \left( { - 5{x^4} + {x^3} + 3{x^2} - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} + \left( {{x^2} + 3{x^2}} \right) - 2x + \left( {6 - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\\f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + {x^2} - 2x + 6} \right) - \left( { - 5{x^4} + {x^3} + 3{x^2} - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - 5{x^4} + {x^2} - 2x + 6 + 5{x^4} - {x^3} - 3{x^2} + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( { - 5{x^4} + 5{x^4}} \right) - {x^3} + \left( {{x^2} - 3{x^2}} \right) - 2x + \left( {6 + 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - {x^3}\,\,\,\,\,\,\,\,\,\,\, - 2{x^2}\,\,\,\,\, - 2x + \,\,\,\,\,\,9\end{array}\)
Thay \(x = 1\) vào đa thức \(f\left( x \right) = - 5{x^4} + {x^2} - 2x + 6\)
Ta được: \(f\left( 1 \right)=-{{5.1}^{4}}+{{1}^{2}}-2.1+6=0\)
Vậy \(x = 1\) là nghiệm của đa thức \(f\left( x \right)\)
Chọn A