Bạn tham khảo:
C $= ( 1 + \dfrac{1}{1.3} ) ( 1 + \dfrac{1}{2.4} ) ( 1 + \dfrac{1}{3.5} ) ... ( 1 + \dfrac{1}{2014.2016} )$
$= \dfrac{4}{1.3} . \dfrac{9}{2.4} . \dfrac{16}{3.5} ... \dfrac{4060225}{2014.2016} $
$= \dfrac{2.2}{ 1 .3 } . \dfrac{3.3}{2.4} . \dfrac{4.4}{3.5} ... \dfrac{2015.2015}{2014.2016}$
$= \dfrac{2.2.3.3.4.4....2015.2015}{1.3.2.4.3.5.....2014.2016 }$
$= \dfrac{2}{2016}$
$ = \dfrac{1}{1008}$