Đáp án:
$P=\dfrac{12}{25}$
Giải thích các bước giải:
$\sin^2a=1-\cos^2a=1-\left ( \dfrac{-4}{5} \right )^2=\dfrac{9}{25}\\
\Rightarrow \sin a=\pm \dfrac{3}{5}$
Do $\pi<a<\dfrac{3\pi}{2}\Rightarrow \sin a<0$
$\Rightarrow \sin a=\dfrac{-3}{5}\\
\tan a=\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{-3}{5}}{\dfrac{-4}{5}}=\dfrac{3}{4}\\
P=\tan a-\tan a\sin^2a\\
=\dfrac{3}{4}-\dfrac{3}{4}.\left (\dfrac{-3}{5} \right )^2\\
=\dfrac{12}{25}$