`lim (\sqrt[]n + 10 - \sqrt[]n )`
`= lim (\frac{n+10-n}{\sqrt[]{n + 10} + \sqrt[]n})`
`= lim (\frac{10}{\sqrt[]{n}.(\sqrt[]{1+\frac{10}{n} } + 1) })`
`Vì lim \sqrt[]n = +∞`
` lim (\sqrt[]{1+\frac{10}{n} } + 1) = √1 + 1 = 2 > 0`
`=> lim (\sqrt[]{n}.(\sqrt[]{1+\frac{10}{n} } + 1)) = +∞`
`=> lim (\frac{10}{\sqrt[]{n}.(\sqrt[]{1+\frac{10}{n} } + 1) }) = 0`
`Vậy lim (\sqrt[]n + 10 - \sqrt[]n ) = 0`.