Ta có:
$A=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256}+\dfrac{1}{512}$
$A\times2=2\times(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256}+\dfrac{1}{512})$
$A\times2=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256}$
$A\times2-A=(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256})-(\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}+\dfrac{1}{256}+\dfrac{1}{512})$
$A=\dfrac{1}{2}-\dfrac{1}{512}$
$A=\dfrac{255}{512}$