Đáp án:
`P=(-\sqrt{x})/(x+\sqrt{x}+1)`
Giải thích các bước giải:
`ĐKXĐ:x>=,x ne 1`
`P=(\sqrt{x}+1)/(x-1)-(x+2)/(x\sqrt{x}-1)-(\sqrt{x}+1)/(x+\sqrt{x}+1)`
`P=(\sqrt{x}+1)/((\sqrt{x}+1)(\sqrt{x}-1))-(x+2)/(x\sqrt{x}-1)-(\sqrt{x}+1)/(x+\sqrt{x}+1)`
`P=1/(\sqrt{x}-1)-(x+2)/(x\sqrt{x}-1)-(\sqrt{x}+1)/(x+\sqrt{x}+1)`
`P=(x+\sqrt{x}+1-x-2-x+1)/(x\sqrt{x}-1)`
`P=(-x+\sqrt{x})/(x\sqrt{x}-1)`
`P=frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}`
`P=(-\sqrt{x})/(x+\sqrt{x}+1)`