Lời giải:
$S=\frac{(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}).(3+9+27+...+3^{10000})}{1.2+2.5+3.8+...+10000.29999}$
Ta có:
$\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}$
$=2cos(\frac{\pi}{2^{10000+1}})$
$=2cos(\frac{\pi}{2^{10001}})$
$3+9+27+...+3^{10000}$
$=\frac{1}{2}.(3^{10000+1}-3)$
$=\frac{1}{2}.(3^{10001}-3)$
$1.2+2.5+3.8+...+10000.29999$
$=10000^2.(10000+1)$
$=10001.10000^2$
$=>S=\frac{2cos(\frac{\pi}{2^{10001}}).\frac{1}{2}.(3^{10001}-3)}{10001.10000^2}$
$=>S=\frac{cos(\frac{\pi}{2^{10001}}).(3^{10001}-3)}{10001.10000^2}$