Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
C2:\\
\lim \frac{{\frac{2}{{{5^n}}} - \frac{1}{{25}}}}{{{{\left( {\frac{3}{5}} \right)}^n} + 2}} = - \frac{1}{{25}}:2 = \frac{{ - 1}}{{50}}\\
C4:\\
\lim \frac{{{{\left( {\frac{3}{4}} \right)}^n} - 4.\frac{1}{2}.{{\left( {\frac{2}{4}} \right)}^n} - \frac{3}{{{4^n}}}}}{{3.{{\left( {\frac{2}{4}} \right)}^n} + 1}} = 0\\
C5:\\
\lim \frac{{3.{{\left( {\frac{2}{3}} \right)}^n} - 1}}{{2.{{\left( {\frac{2}{3}} \right)}^n} + 3.1}} = \frac{{ - 1}}{3}\\
C6:\\
\lim \sqrt {\frac{{3.{{\left( {\frac{3}{4}} \right)}^n} + 1}}{{3.{{\left( {\frac{3}{4}} \right)}^n} + 4.1}}} = \frac{1}{2}\\
C7:\\
\lim \frac{{3.{{\left( {\frac{2}{3}} \right)}^n} - 1}}{{2.{{\left( {\frac{2}{3}} \right)}^n} + 3.1}} = \frac{{ - 1}}{3}
\end{array}\)