a, B = ($\frac{3x}{2x+3}$ + $\frac{4}{3-2x}$ - $\frac{4x^{2}-23x-12}{4x^{2}-9}$) : ($\frac{x+3}{2x+3}$) (ĐKXĐ: x $\neq$ ±$\frac{3}{2}$ , x $\neq$ -3)
= $\frac{3x(2x-3)-4(2x+3)-4x^{2}+23x+12}{4x^{2}-9}$ . $\frac{2x+3}{x+3}$
= $\frac{2x^{2}+6x}{(2x-3)(x+3)}$
= $\frac{2x}{2x-3}$
b, $2x^{2}$ + 7x +3=0 ⇔ 2$x^{2}$ + 6x + x + 3=0 ⇔ (x+3)(2x+1)=0 ⇔\(\left[ \begin{array}{l}x+3=0\\2x+1=0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=-3(loại)\\x=\frac{-1}{2}(TM)\end{array} \right.\)
Thay x=$\frac{-1}{2}$ vào B ta có:
B= $\frac{1}{4}$
c, Để B ∈ Z thì $\frac{2x}{2x-3}$ ∈ Z
⇒ 2x chia hết cho 2x - 3
⇔ 2x-2x+3 chia hết cho 2x-3
⇔ 3 chia hết cho 2x-3
⇔ 2x-3 ∈ Ư(3)= {±1;±3}
⇔ x ∈ {2;1;3;0}
d, |B| < 1 ⇔ \(\left[ \begin{array}{l}0\leq B <1\\0\geq B >-1 \end{array} \right.\)