Đáp án đúng: A
Phương pháp giải:
Số hạt nhân bị phân rã: \(\Delta N = {N_0}.\left( {1 - {2^{ - \frac{t}{T}}}} \right)\,\)Liều lượng phóng xạ cho một lần chiếu xạ trong các lần chiếu là không đổi (xác định).Giải chi tiết:Gọi \(\Delta N\) là liều lượng cho một lần chiếu xạ (∆N = hằng số)Trong lần chiếu xạ đầu tiên: \(\Delta N = {N_{01}}.\left( {1 - {2^{ - \frac{{{t_1}}}{T}}}} \right)\,\,\,\left( 1 \right)\)Trong lần chiếu xạ tiếp theo sau đó 2 năm: \(\Delta N = {N_{02}}.\left( {1 - {2^{ - \frac{{{t_2}}}{T}}}} \right)\)Với: \({N_{02}} = {N_{01}}{.2^{ - \frac{{\Delta t}}{T}}} \Rightarrow \Delta N = {N_{01}}{.2^{ - \frac{{\Delta t}}{T}}}.\left( {1 - {2^{ - \frac{{{t_2}}}{T}}}} \right)\,\,\,\left( 2 \right)\)Từ (1) và (2) ta có: \({N_{01}}{.2^{ - \frac{{\Delta t}}{T}}}.\left( {1 - {2^{ - \frac{{{t_2}}}{T}}}} \right) = {N_{01}}.\left( {1 - {2^{ - \frac{{{t_1}}}{T}}}} \right)\)\( \Leftrightarrow {2^{ - \frac{{\Delta t}}{T}}}.\left( {1 - {2^{ - \frac{{{t_2}}}{T}}}} \right) = 1 - {2^{ - \frac{{{t_1}}}{T}}}\,\,\,\left( * \right)\) Với: \(\left\{ \begin{array}{l}\Delta t = 2\,\left( {nam} \right)\\{t_1} = 10p\\T = 4\left( {\,nam} \right)\end{array} \right.\)Thay vào (*) ta được: \({2^{ - \frac{2}{4}}}.\left( {1 - {2^{ - \frac{{{t_2}}}{{4.365.24.60}}}}} \right) = 1 - {2^{ - \frac{{10}}{{4.365.24.60}}}}\) \( \Leftrightarrow {2^{ - \frac{{{t_2}}}{{4.365.24.60}}}} = 1 - \sqrt 2 .\left( {1 - {2^{ - \frac{{10}}{{4.365.24.60}}}}} \right) \Rightarrow {t_2} = 14,1phut\)Đáp án A.