a. Tìm các số \(x,\,y\) thỏa mãn đẳng thức: \(3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\)
b. Với \(a,\,b,\,c,\,d\) dương, chứng minh: \(F = \frac{a}{{b + c}} + \frac{b}{{c + d}} + \frac{c}{{d + a}} + \frac{d}{{a + b}} \ge 2\)
A.\(\begin{array}{l}a)\,\,\left( {x;\,y} \right) = \left( {0;\,1} \right)\\b)\,\,F\,\, \ge \,\,2\end{array}\)
B.\(\begin{array}{l}a)\,\,\left( {x;\,y} \right) = \left( {1;\,1} \right)\\b)\,\,F\,\, \ge \,\,2\end{array}\)
C.\(\begin{array}{l}a)\,\,\left( {x;\,y} \right) = \left( {1;\,2} \right)\\b)\,\,F\,\, \ge \,\,2\end{array}\)
D.\(\begin{array}{l}a)\,\,\left( {x;\,y} \right) = \left( {1;\, - 1} \right)\\b)\,\,F\,\, \ge \,\,2\end{array}\)