Đáp án: x=2 hoặc y=-2
Giải thích các bước giải:
Tâm O; bán kính R=2
Gọi tiếp điểm có tọa độ M (x;y)
$\begin{array}{l}
\Rightarrow \overrightarrow {OM} = \left( {x;y} \right);\overrightarrow {AM} = \left( {x - 2;y + 2} \right)\\
\Rightarrow \left\{ \begin{array}{l}
OM = 2\\
OM \bot MA
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} = 4\\
\overrightarrow {OM} .\overrightarrow {AM} = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} = 4\\
x.\left( {x - 2} \right) + y\left( {y + 2} \right) = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} = 4\\
{x^2} + {y^2} - 2x + 2y = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{x^2} + {y^2} = 4\\
x - y = 2
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {y + 2} \right)^2} + {y^2} = 4\\
x = y + 2
\end{array} \right.\\
\Rightarrow 2{y^2} + 4y + 4 = 4\\
\Rightarrow {y^2} + 2y = 0\\
\Rightarrow \left[ \begin{array}{l}
y = 0 \Rightarrow x = y + 2 = 2\\
y = - 2 \Rightarrow x = y + 2 = 0
\end{array} \right.\\
\Rightarrow M\left( {0; - 2} \right)/M\left( {2;0} \right)\\
\Rightarrow \left[ \begin{array}{l}
\overrightarrow {AM} = \left( { - 2;0} \right)\\
\overrightarrow {AM} = \left( {0;2} \right)
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
TT: - 2x + 0.y + c = 0\\
TT:0.x + 2.y + c' = 0
\end{array} \right.\\
Do:A \in TT\\
\Rightarrow \left[ \begin{array}{l}
- 2.2 + c = 0\\
2.\left( { - 2} \right) + c' = 0
\end{array} \right.\\
\Rightarrow c = c' = 4\\
\Rightarrow \left[ \begin{array}{l}
- 2x + 4 = 0\\
2y + 4 = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 2\\
y = - 2
\end{array} \right.
\end{array}$