Trong không gian \(Oxyz\), cho ba điểm \(A\left( {2;0;0} \right)\), \(B\left( {0; - 1;0} \right)\), \(C\left( {0;0;3} \right)\). Mặt phẳng \(\left( {ABC} \right)\) có phương trình là
A.\(\dfrac{x}{{ - 2}} + \dfrac{y}{1} + \dfrac{z}{3} = 1\).
B.\(\dfrac{x}{2} + \dfrac{y}{1} + \dfrac{z}{{ - 3}} = 1\).
C.\(\dfrac{x}{2} + \dfrac{y}{1} + \dfrac{z}{3} = 1\).
D.\(\dfrac{x}{2} + \dfrac{y}{{ - 1}} + \dfrac{z}{3} = 1\).

Các câu hỏi liên quan

Quy đồng các phân thức \(\dfrac{{3{x^2} + 2x - 4}}{{{x^3} - 7x + 6}};\,\)\(\dfrac{{2x - 1}}{{{x^2} + x - 6}};\)\(\dfrac{3}{{x + 3}}\)
A.\(\dfrac{3x^2 + 2x - 4}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x - 1 \right )}\,;\,\,\dfrac{\left ( 2x - 1 \right )\left ( x - 1 \right )}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x - 1 \right )}\,;\,\,\dfrac{3\left ( x - 2 \right )\left ( x - 1 \right )}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x - 1 \right )}\)
B.\(\dfrac{3x^2 + 2x - 4}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x - 1 \right )}\,;\,\,\dfrac{\left ( 2x - 1 \right )\left ( x - 1 \right )}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x - 1 \right )}\,;\,\,\dfrac{3\left ( x + 2 \right )\left ( x - 1 \right )}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x - 1 \right )}\)
C.\(\dfrac{3x^2 + 2x - 4}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x + 1 \right )}\,;\,\,\dfrac{\left ( 2x - 1 \right )\left ( x + 1 \right )}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x + 1 \right )}\,;\,\,\dfrac{3\left ( x + 2 \right )\left ( x + 1 \right )}{\left ( x - 3 \right )\left ( x + 2 \right )\left ( x + 1 \right )}\)
D.\(\dfrac{3x^2 + 2x - 4}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x + 1 \right )}\,;\,\,\dfrac{\left ( 2x - 1 \right )\left ( x + 1 \right )}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x + 1 \right )}\,;\,\,\dfrac{3\left ( x - 2 \right )\left ( x + 1 \right )}{\left ( x + 3 \right )\left ( x - 2 \right )\left ( x + 1 \right )}\)