Trong không gian với hệ trục toạ độ \(Oxyz,\) mặt phẳng \(\left( \alpha  \right)\) cắt mặt cầu \(\left( S \right)\) tâm \(I\left( {1;\, - 3;\,3} \right)\) theo giao tuyến là đường tròn tâm \(H\left( {2;\,0;\,1} \right),\) bán kính \(r = 2.\) Phương trình của mặt cầu \(\left( S \right)\) là
A.\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 4.\)
B.\({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 18.\)
C.\({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 4.\)
D.\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 18.\)

Các câu hỏi liên quan