Đáp án:
Giải thích các bước giải:
\[\begin{array}{l}
Lay\,M\left( {0; - 6} \right) \notin \Delta \\
M' = {T_{\overrightarrow v }}\left( M \right) \Leftrightarrow \left\{ \begin{array}{l}
{x_{M'}} - 0 = - 2\\
{y_{M'}} + 6 = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x_{M'}} = - 2\\
{y_{M'}} = - 5
\end{array} \right. \Rightarrow M'\left( { - 2; - 5} \right)\\
M = {V_{\left( {I,2} \right)}}\left( M \right) \Leftrightarrow \overrightarrow {IM} = 2\overrightarrow {IM'} \\
\Leftrightarrow \left\{ \begin{array}{l}
{x_{M}} + 2 = 2\left( {{x_M} + 2} \right)\\
{y_{M}} - 2 = 2\left( {{y_M} - 2} \right)
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{x_{M}} = 2\left( { - 2 + 2} \right) - 2 = - 2\\
{y_{M}} = 2\left( { - 5 - 2} \right) + 2 = - 12
\end{array} \right.\\
\Rightarrow M\left( { - 2; - 12} \right)\\
Goi\,\Delta :2x - y + c = 0\,la\,anh\,cua\,\Delta \,qua\,phep\,dong\,dang\\
\Rightarrow M \in \Delta \Leftrightarrow 2.\left( { - 2} \right) - \left( { - 12} \right) + c = 0 \Leftrightarrow c = - 8\\
\Rightarrow \Delta :2x - y - 8 = 0
\end{array}\]