Trong mặt phẳng tọa độ \(Oxy \), cho hai điểm \(A \left( {1;2} \right) \) và \(B \left( {3;4} \right) \). Điểm \(M \left( { \dfrac{a}{b};0} \right) \) (với \( \dfrac{a}{b} \) là phân số tối giản) trên trục hoành thỏa mãn tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. Tính \(S = a + b \).
A.\(S = - 2\)
B. \(S = 8\).
C. \(S = 7\).
D. \(S = 4\).