Đáp án đúng: A Giải chi tiết:+) Gọi \(\overline {{a_1}{a_2}{a_3}} \) là số có ba chữ số khác nhau được lập từ tập các chữ số trên. Ta có: \({a_1} \ne 0 \Rightarrow {a_1}\) có 3 cách chọn. \({a_2},\;{a_3}\) có \(A_3^2 = 6\) các chọn. \( \Rightarrow \) có \(3.6 = 18\) số được chọn. +) Tính tổng các số lập được: Ta thấy số 1 có thể xuất hiện ở hàng trăm 6 lần: \(102;\;103;\;120;\;130;\;123;\;132.\) Số 1 có thể xuất hiện ở hàng chục 4 lần: \(210;\;310;\;213;\;\;312.\) Số 1 có thể xuất hiện ở hàng đơn vị 4 lần: \(201;\;301;\;231;\;321.\) Tương tự đối với các số \(2\) và \(3.\) Số \(0\) không ảnh hưởng đến tổng cần tính. \(\begin{array}{l} \Rightarrow \overline {{a_1}{a_2}{a_3}} = 100{a_1} + 10{a_2} + {a_3}\\ = 6.100\left( {1 + 2 + 3} \right) + 4.10\left( {0 + 1 + 2 + 3} \right) + 4.\left( {0 + 1 + 2 + 3} \right)\\ = 3600 + 240 + 24 = 3864.\end{array}\) Chọn A.