`text{trong ΔBCD có:}text`
`text{E là trung điểm BC (gt)}text`
`text{F là trung điểm BD (gt)}text`
`text{nên EF là đường trung bình của ΔBCD}text`
`text{⇒ EF//CD và EF=}text` $\frac{1}{2}$ `text{CD (1)}text`
`text{trong ΔACD có:}text`
`text{H là trung điểm AC (gt)}text`
`text{G là trung điểm AD (gt)}text`
`text{nên HG là đường trung bình ΔACD}text`
`text{⇒ HG//AC và HG=}text` $\frac{1}{2}$ `text{AC (2)}text`
`text{từ (1) và (2) ⇒ EF//HG và EF=HG}text`
`text{⇒ tứ giác EFHG là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)}text`
`text{mặt khác: EF//CD (chứng minh trên)}text`
`text{AB⊥CD (gt)}text`
`text{⇒ EF⊥AB}text`
`text{trong ΔABC có HE là đường trung bình⇒ HE//AB}text`
`text{⇒ HE⊥EF hay}text` `hat{FEH}` = `90^o`
`text{vậy hình bình hành EFGH là hình chữ nhật}text`
`text{⇒ EG=FH (2 đường chéo trong hình chữ nhật)}text`
🍀#ɷįᵰƫ_ᵭậᵱ_ɕɧᶏɨ 🍀