Đáp án: `bbC`
$\\$
`F(x)=int(x^3 + 3 x^2 + 3 x - 1)/(x^2 + 2 x + 1) dx`
`=int( x^3 + 3 x^2 + 3 x - 1)/(x + 1)^2`
`= int[- 2/(x + 1)^2+1+x ] dx`
`= -2 int1/(x + 1)^2 dx + int1\ \dx+ int \ \x dx `
`= -2(-1/x+1)+x+x^2/2+C`
`=x^2/2+x+2/(x+1)+C`
Có `F(1)=1/3=>5/2+C=1/3<=> C=-13/6`
`=>F(x)=x^2/2+x+2/(x+1)-13/6`