5.8: C
\(e = \dfrac{{\left| {\Delta \Phi } \right|}}{{\Delta t}} = \dfrac{{\left| {0,4 - 1,2} \right|}}{{0,2}} = 4V\)
5.9: B
\(e = \dfrac{{\left| {\Delta \Phi } \right|}}{{\Delta t}} = \dfrac{{\left| {1,6 - 0,6} \right|}}{{0,1}} = 10V\)
5.10: B
\(\Phi = BScos\left( {\overrightarrow n ,\overrightarrow B } \right) = {5.10^{ - 4}}.\left( {0,03.0,04} \right).cos{60^0} = {3.10^{ - 7}}\left( {{\rm{W}}b} \right)\)
5.11: A
\(\begin{array}{l}\Phi = BScos\left( {\overrightarrow n ,\overrightarrow B } \right)\\ \Rightarrow cos\left( {\overrightarrow n ,\overrightarrow B } \right) = \dfrac{\Phi }{{BS}} = \dfrac{{{{10}^{ - 6}}}}{{{{4.10}^{ - 4}}.\left( {0,05.0,05} \right)}} = 1\\ \Rightarrow \left( {\overrightarrow n ,\overrightarrow B } \right) = {0^0}\end{array}\)
5.12: B
\(\begin{array}{l}e = \dfrac{{\left| {\Delta \Phi } \right|}}{{\Delta t}} = \dfrac{{\left| {N{B_2}Scos{{60}^0} - N{B_1}Scos{{60}^0}} \right|}}{{\Delta t}} = \dfrac{{NScos{{60}^0}\left| {{B_2} - {B_1}} \right|}}{{\Delta t}}\\ = \dfrac{{10.\left( {{{20.10}^{ - 4}}} \right)cos{{60}^0}\left| {0 - {{2.10}^{ - 4}}} \right|}}{{0,01}} = {2.10^{ - 4}}V = 0,2mV\end{array}\)
5.13: C
\(\begin{array}{l}e = \dfrac{{\left| {\Delta \Phi } \right|}}{{\Delta t}} = \dfrac{{\left| {N{B_2}S - N{B_1}S} \right|}}{{\Delta t}} = \dfrac{{NS\left| {{B_2} - {B_1}} \right|}}{{\Delta t}}\\ = \dfrac{{10.\left( {{{25.10}^{ - 4}}} \right)\left| {2,{{4.10}^{ - 3}} - 0} \right|}}{{0,4}} = 1,{5.10^{ - 4}}V = 0,15mV\end{array}\)
5.14: A