Vật sáng AB đặt vuông góc với trục chính của thấu kính, cách thấu kính 20 (cm), qua thấu kính cho ảnh thật A’B’ cao gấp 3 lần AB. Tiêu cự của thấu kính là: A.f = 15 (cm). B.f = 30 (cm). C.f = -15 (cm). D.f = -30 (cm).
Phương pháp giải: + Sử dụng biểu thức hệ số phóng đại ảnh: \(k = \dfrac{{A'B'}}{{AB}} = - \dfrac{{d'}}{d}\) + Sử dụng công thức thấu kính: \(\dfrac{1}{f} = \dfrac{1}{d} + \dfrac{1}{{d'}}\) Giải chi tiết:Ta có: ảnh thật cao gấp 3 lần vật => Thấu kính là thấu kính hội tụ \(\begin{array}{l} \Rightarrow k = \dfrac{{A'B'}}{{AB}} = - \dfrac{{d'}}{d} = - 3\\ \Rightarrow d' = 3d = 60cm\end{array}\) Áp dụng công thức thấu kính: \(\dfrac{1}{f} = \dfrac{1}{d} + \dfrac{1}{{d'}} = \dfrac{1}{{20}} + \dfrac{1}{{ 60}} \Rightarrow f = 15cm\) Chọn A