Đáp án + giải thích các bước giải:
Bất đẳng thức Hölder: `\prod_{i=1}^m(\sum_{j=1}^n a_{i_j})>=(\sum_{j=1}^n\root{m}{\prod_{i=1}^m a_{i_j}})^m`
Hay `(a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n})>=(root{m}{a_{1_1}a_{2_1}...a_{m_1}}+root{m}{a_{1_2}a_{2_2}...a_{m_2}}+...+root{m}{a_{1_n}a_{2_n}...a_{m_n}})^m`
Với `a_{i_j}>0` mà `i=\overline{1,m};j=\overline{1,n}`
Với `m=n=2`, ta có đó là bất đẳng thức Bunhiacopxki:
`(a_{1_1}+a_{1_2})(a_{2_1}+a_{2_2})>=(\sqrt{a_{1_1}a_{2_1}}+\sqrt{a_{1_2}a_{2_2}})^2`
Với `m=n=3` (bất đẳng thức Holder ba số thường gặp nhất)
`(a_{1_1}+a_{1_2}+a_{1_3})(a_{2_1}+a_{2_2}+a_{2_3})(a_{3_1}+a_{3_2}+a_{3_3})>=(\root{3}{a_{1_1}a_{2_1}a_{3_1}}+\root{3}{a_{1_2}+a_{2_2}+a_{3_2}}+\root{3}{a_{1_3}a_{2_3}a_{3_3}})^3`
Tương tự với `m=n=4`
Chứng minh bất đẳng thức Holder:
Áp dụng bất đẳng thức Cô-si, ta có:
`(a_{1_1})/(a_{1_1}+a_{1_2}+...+a_{1_n})+(a_{2_1})/(a_{2_1}+a_{2_2}+...+a_{2_n})+...+(a_{m_1})/(a_{m_1}+a_{m_2}+...+a_{m_n})>=m \root{m} {(a_{1_1}a_{2_1}...a_{m_1})/((a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n}))}`
Tương tự, có:
`(a_{1_2})/(a_{1_1}+a_{1_2}+...+a_{1_n})+(a_{2_2})/(a_{2_1}+a_{2_2}+...+a_{2_n})+...+(a_{m_2})/(a_{m_1}+a_{m_2}+...+a_{m_n})>=m \root{m} {(a_{1_2}a_{2_2}...a_{m_2})/((a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n}))}`
...
`(a_{1_n})/(a_{1_1}+a_{1_2}+...+a_{1_n})+(a_{2_n})/(a_{2_1}+a_{2_2}+...+a_{2_n})+...+(a_{m_1})/(a_{m_n}+a_{m_2}+...+a_{m_n})>=m \root{m} {(a_{1_n}a_{2_n}...a_{m_n})/((a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n}))}`
Cộng tương ứng vế với vế các bất đẳng thức trên, ta có:
`m>=m(\root{m}{a_{1_2}a_{2_2}...a_{m_2}}+...+root{m}{a_{1_n}a_{2_n}...a_{m_n}})/(\root{m}((a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n}))} `
`->(a_{1_1}+a_{1_2}+...+a_{1_n})(a_{2_1}+a_{2_2}+...+a_{2_n})...(a_{m_1}+a_{m_2}+...+a_{m_n})>=(root{m}{a_{1_1}a_{2_1}...a_{m_1}}+root{m}{a_{1_2}a_{2_2}...a_{m_2}}+...+root{m}{a_{1_n}a_{2_n}...a_{m_n}})^m`