Với số phức \(z\) thỏa mãn \(\left| {z - 2 + i} \right| = 4\), tập hợp các điểm biểu diễn các số phức \(z\) là một đường tròn. Tìm bán kính \(R\) của đường tròn đó. A.\(R = 8\) B.\(R = 16\) C.\(R = 2\) D.\(R = 4\)
Đáp án đúng: D Giải chi tiết:Đặt \(z = x + yi\,\,\left( {x,y \in \mathbb{R}} \right)\). Theo bài ra ta có: \(\left| {x + yi - 2 + i} \right| = 4 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 16\) Vậy tập hợp các điểm biểu diễn các số phức \(z\) là một đường tròn có tâm \(I\left( {2;1} \right)\), bán kính \(R = 4\). Chọn D.