$x.y=\dfrac{5}{6}⇔x=\dfrac{5}{6y}$
$y.z=\dfrac{7}{6}⇔z=\dfrac{7}{6y}$
$x.z=\dfrac{5}{7}$
$⇔\dfrac{5}{6y}.\dfrac{7}{6y}=\dfrac{5}{7}$
$⇔\dfrac{35}{36y^2}=\dfrac{5}{7}$
$⇔245=180y^2$
$⇔y^2=\dfrac{49}{36}$
$⇔y=±\dfrac{7}{6}$
Nếu $y=\dfrac{7}{6}⇒x=\dfrac{5}{6}:\dfrac{7}{6}=\dfrac{5}{7}$
$z=\dfrac{7}{6}:\dfrac{7}{6}=1$
$y=\dfrac{7}{6}⇒x=\dfrac{5}{6}:\dfrac{7}{6}=\dfrac{5}{7}$
$z=\dfrac{7}{6}:\dfrac{7}{6}=1$
Nếu$y=-\dfrac{7}{6}⇒x=\dfrac{5}{6}:(-\dfrac{7}{6})=-\dfrac{5}{7}$
$z=\dfrac{7}{6}:(-\dfrac{7}{6})=-1$