Đáp án:
$\left \{ {{\left \{ {{x + y + z = 9 } \atop {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1}} \right.} \atop {xy + yz + zx = 27}} \right.$ `↔` $\left \{ {{\left \{ {{(x + y + z)^2 = 81 (1) } \atop {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = 1 (2)}} \right.} \atop {3(xy + yz + zx) = 81 (3)}} \right.$
Từ `(1)(3) -> (x + y + z)^2 = 3(xy + yz + zx)`
`↔ x^2 + y^2 + z^2 + 2(xy + yz + zx) - 3(xy + yz + zx) = 0`
`↔ x^2 + y^2 + z^2 - xy - yz - zx = 0`
`↔ 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx = 0`
`↔ (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0`
`↔ (x - y)^2 + (y - z)^2 + (z - x)^2 = 0`
`↔` $\left \{ {{\left \{ {{x - y = 0 } \atop {y - z = 0}} \right.} \atop {z - x = 0}} \right.$ `↔ x = y = z (4)`
Từ `(1)(4) -> x = y = z = 3` ( thõa mãn `(2)`)
Vậy `x = y = z = 1`
Giải thích các bước giải: