Biết rằng \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1.\) Tìm giá trị thực của tham số \(m\) để hàm số $f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\dfrac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}}}&{{\rm{khi }}x \ne \pi }\\m&{{\rm{khi }}x = \pi }\end{array}} \right.$ liên tục tại \(x = \pi .\)
Gợi ý câu trả lời: