Cho các số phức \[{{z}_{1}}=-3i,{{z}_{2}}=4+i\] và z thỏa mãn \[\left| z-i \right|=2.\] Biết biểu thức \[T=\left| z-{{z}_{1}} \right|+2\left| z-{{z}_{2}} \right|\] đạt giá trị nhỏ nhất khi \[z=a+bi\left( a;b\in R \right).\] Hiệu \[a-b\] bằng:
Gợi ý câu trả lời: