Cho hình chóp S.ABC có đáy là tam giác ABC đều, đường cao SH với H nằm trong $\Delta ABC$ và $2SH=BC,\left( SBC \right)$ tạo với mặt phẳng (ABC) một góc ${{60}^{0}}.$ Biết có một điểm O nằm trên đường cao SH sao cho $d\left( O;AB \right)=d\left( O;AC \right)=d\left( O;\left( SBC \right) \right)=1.$ Tính thể tích khối cầu ngoại tiếp hình chóp đã cho.

Bình luận Loga
0 bình luận
user-avatar
Bình luận Facebook