Trong không gian với hệ trục toạ độ $Oxyz$, cho
mặt cầu $\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2
\right)}^{2}}+{{\left( z-3 \right)}^{2}}=9$, điểm $A\left( 0;0;2 \right)$.
Phương trình mặt phẳng $\left( P \right)$ đi qua $A$ và cắt mặt cầu $\left( S
\right)$ theo thiết diện là hình tròn $\left( C \right)$có diện tích nhỏ nhất
là: