Đáp án:
Giải thích các bước giải:
`1, x( x + 1 ) - 3 = ( 2x - 1 )( x - 1 )`
`<=> x^2 + x - 3 = 2x^2 - 2x - x + 1`
`<=> x^2 - 2x^2 + x + 2x + x - 3 - 1 = 0`
`<=> ( x^2 - 2x^2 ) + ( x + 2x + x ) + ( - 3 - 1 ) = 0`
`<=> -x^2 + 4x - 4 = 0`
`<=> -x^2 + 2x + 2x - 4 = 0`
`<=> ( -x^2 + 2x ) + ( 2x - 4 ) = 0`
`<=> -x ( x - 2 ) + 2 ( x - 2 ) = 0`
`<=> ( -x + 2 )( x - 2 ) = 0`
`<=> - ( x - 2 )( x - 2 ) = 0`
`<=> ( x - 2 )^2 = 0`
`<=> x - 2 = 0`
`<=> x = 2 `
`2, ( x + 2 )( 3x + 1 ) - x^2 + 4 = 0`
`<=> 3x^2 + x + 6x + 2 - x^2 + 4 = 0`
`<=> ( 3x^2 - x^2 ) + ( x + 6x ) + ( 2 + 4 ) = 0`
`<=> 2x^2 + 7x + 6 = 0`
`<=> 2x^2 + 2x + 3/2x + 6 = 0`
`<=> ( 2x^2 + 4x ) + ( 3x + 6 ) = 0`
`<=> 2x( x + 2 ) + 3 ( x + 2 ) = 0`
`<=> ( x + 2 )( 2x + 3 ) = 0`
`<=>` \(\left[ \begin{array}{l}x+2=0\\2x=3=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-2\\x=-3/2\end{array} \right.\)
`3, x( x - 3 ) + 2 = x( 1 - x ) + 2x - 2`
`<=> x^2 - 3x + 2 = x - x^2 + 2x - 2`
`<=> x^2 - 3x + 2 - x + x^2 - 2x + 2 = 0`
`<=> ( x^2 + x^2 ) - ( 3x + x + 2x ) + ( 2 + 2 ) = 0`
`<=> 2x^2 - 6x + 4 = 0`
`<=> 2 ( x^2 - 3x + 2 ) = 0`
`<=> x^2 - x - 2x + 2 = 0`
`<=> ( x^2 - x ) - ( 2x - 2 ) = 0`
`<=> x ( x - 1 ) - 2 ( x - 1 ) = 0`
`<=> ( x - 2 )( x - 1 ) = 0`
`<=>` \(\left[ \begin{array}{l}x-2=0\\x-1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2\\x=1\end{array} \right.\)