Đáp án:
x=2017
Giải thích các bước giải:
\(\begin{array}{l}
\frac{{x + 1}}{{2018}} - 1 + \frac{{x + 2}}{{2019}} - 1 = \frac{{x - 2014}}{3} - 1 + \frac{{x - 2013}}{4} - 1\\
\to \frac{{x - 2017}}{{2018}} + \frac{{x - 2017}}{{2019}} = \frac{{x - 2017}}{3} + \frac{{x - 2017}}{4}\\
\to \left( {x - 2017} \right)\left( {\frac{1}{{2018}} + \frac{1}{{2019}} - \frac{1}{3} - \frac{1}{4}} \right) = 0\\
\to x - 2017 = 0\\
\to x = 2017
\end{array}\)