Lời giải:
Phản chứng, tức là giả sử không tồn tại số nào trong các số đã cho chia \(19\) dư $1$
Khi đó các số đã cho chia $19$ có thể dư $0,2,3,...,18$ ($19$ loại số dư)
Mà từ \(10,10^2,...,10^{20}\) có $20$ số, nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{20}{19}\right ]+1=2\) số có cùng số dư khi chia cho $19$
Giả sử đó là: \(10^m,10^n(1\leq m< n\leq 20)\)
Khi đó: \(10^n-10^m\vdots 19\)
\(\Leftrightarrow 10^m(10^{n-m}-1)\vdots 19\)
\(\Rightarrow 10^{n-m}-1\vdots 19\) hay \(10^{n-m}\) chia $19$ dư $1$
Mà \(n-m\) chắc chắn thuộc trong khoảng từ \(1\to 20\) , tức là tồn tại số nằm trong các số đã cho chia $19$ dư $1$
Vậy điều giả sử sai. Ta có đpcm.