1.
$f'_1(x)=(x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x$
$f'_2(x)=\dfrac{(\cos x)' x-x'\cos x}{x^2}=\dfrac{-x\sin x -\cos x}{x^2}$
$\to \dfrac{f'_2(x)}{f'_1(x)}=\dfrac{-x\sin x-\cos x}{x^2(\sin x+x\cos x}$
$\to \dfrac{f'_2(1)}{f'_1(1)}=-1$
2.
$y=\dfrac{\tan\sqrt{x}}{\sqrt{x}}$
$dy=\dfrac{(\tan\sqrt{x})'\sqrt{x}- \tan\sqrt{x}.(\sqrt{x})'}{x} dx$
$=\dfrac{\dfrac{1}{2\cos^2\sqrt{x}}-\tan\sqrt{x}.\dfrac{1}{2\sqrt{x}}}{x}dx$
$=\dfrac{1}{2x\cos^2\sqrt{x}}-\dfrac{\tan\sqrt{x}}{2x\sqrt{x}}dx$
3.
$y'=3(x^2+1)^2(x^2+1)'$
$=3(x^2+1)^2.2x$
$=6x(x^2+1)^2$
$y''=6(x^2+1)^2+6x[(x^2+1)^2]' $
$=6(x^2+1)^2+2.6x(x^2+1)(x^2+1)'$
$=6(x^2+1)^2+24x^2(x^2+1)$
$=6(x^4+2x^2+1)+24x^4+24x^2$
$=30x^4+36^2+6$
$y'''=120^3+72x$