a,
$\tan^2\alpha+\cot^2\alpha$
$=(\tan\alpha+\cot\alpha)^2-2\tan\alpha.\cot\alpha$
$=3^2-2.1$
$=7$
b,
$\tan^3\alpha+\cot^3\alpha$
$=(\tan\alpha+\cot\alpha)^3-3\tan^2\alpha\cot\alpha-3\tan\alpha\cot^2\alpha$
$=(\tan\alpha+\cot\alpha)^3-3\tan\alpha\cot\alpha(\tan\alpha+\cot\alpha)$
$=3^3-3.1.3=18$