Đáp án + Giải thích các bước giải:
`1.`
`a)` `(x-3)/x=2-(x-3)/(x+3) ( x ne 0 , xne -3)`
`<=> [(x-3)(x+3)]/[x(x+3)] = [2x(x+3)]/[x(x+3)]-[x(x-3)]/[x(x+3)]`
`=>(x-3)(x+3)=2x(x+3)-x(x-3)`
`<=>x^2-9=2x^2+6x-x^2+3x`
`<=>x^2-9-2x^2-6x+x^2-3x=0`
`<=>-9x-9=0`
`<=>-9x=9`
`<=>x=-1(tm)`
Vậy `S={-1}`
`b)` `|x^2-1|=|-3|`
`<=>|x^2-1|=3`
`<=>`\(\left[ \begin{array}{l}x^2-1=3\\x^2-1=-3\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x^2=4\\x^2=-2(L)\end{array} \right.\)
`<=>x^2=4<=>x=pm2`
Vậy `S={pm2}`
`c)` `3x^2-2x-16=0`
`<=>3x^2+6x-8x-16=0`
`<=>3x(x+2)-8(x+2)=0`
`<=>(x+2)(3x-8)=0`
`<=>`\(\left[ \begin{array}{l}x+2=0\\3x-8=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=-2\\x=\dfrac{8}{3}\end{array} \right.\)
Vậy `S={-2;8/3}`