$\begin{array}{l} 1)\sin \left( {3x + {{15}^o}} \right) = \dfrac{{ - 1}}{2}\\ \Leftrightarrow \sin \left( {3x + {{15}^o}} \right) = \sin \left( { - {{30}^o}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} 3x + {15^o} = - {30^o} + k{360^o}\\ 3x + {15^o} = {210^o} + k{360^o} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} x = - {15^o} + k{120^o}\\ x = {65^o} + k{120^o} \end{array} \right.\left( {k \in \mathbb{Z}} \right)\\ 2)\sin \left( {2x + \dfrac{\pi }{3}} \right) = \sin \left( {3x - \dfrac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l} 2x + \dfrac{\pi }{3} = 3x - \dfrac{\pi }{6} + k2\pi \\ 2x + \dfrac{\pi }{3} = \dfrac{{7\pi }}{6} - 3x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} - k2\pi \\ x = \dfrac{\pi }{6} + \dfrac{{k2\pi }}{5} \end{array} \right.\left( {k \in \mathbb{Z}} \right) \end{array}$