Bài 1:
Gọi số tự nhiên thỏa mãn những tính chất của đề bài là $n$
Vì $n$ chia $17$ dư $4$ , chia $19$ dư $11$ nên:
\(n=17k+4=19t+11(k,t\in\mathbb{N})\)
\(\Rightarrow 19t+7=17k\vdots 17\)
\(\Leftrightarrow 17t+2t+7\vdots 17\)
\(\Leftrightarrow 2t+7\vdots 17\)
Do đó \(2t+7=17m\) với $m$ là một số tự nhiên nào đó.
\(\Leftrightarrow 2t=17m-7\)
Vì $2t$ chẵn nên $17m-7$ cũng chẵn. Do đó $m$ lẻ
\(\Rightarrow m\geq 1\Rightarrow 2t=17m-7\geq 10\)
\(\Leftrightarrow t\geq 5\)
Suy ra \(n=19t+11\geq 19.5+11=106\)
Thử lại thấy đúng
Vậy số $n$ nhỏ nhất thỏa mãn đkđb là $106$
Bài 3:
-Nếu $p$ chẵn thì $p+10$ chẵn. Mà $p+10>2$ nên $p+10$ không thể là số nguyên tố.
-Nếu $p$ lẻ thì $p+3$ chẵn. Mà $p+3>2$ nên $p+3$ không thể là số nguyên tố.
Vậy không tồn tại số nguyên tố $p$ nào thỏa mãn $p+3$ và $p+10$ đồng thời là số nguyên tố.