a, BH = AK:
Ta có: ΔABC vuông cân tại A.
=> A1ˆ=A2ˆ=90o (1)
Cũng có: BH ⊥ AE.
=> ΔBAH vuông tại H.
=> B1ˆ+A2ˆ=90o (2)
Từ (1) và (2) => A1ˆ=B1ˆ.
Xét ΔBAH và ΔACK có:
+ AB = AC (ΔABC cân)
+ H1ˆ=K1ˆ=90o (CK ⊥ AE, BH ⊥ AE)
+ A1ˆ=B1ˆ=(cmt)
=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng)
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90o [2]
Và MCKˆ+CEKˆ=90o [3]
AEMˆ=CEKˆ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆ [5]
Từ [1] và [5] => HBMˆ=MAKˆ.