Đáp án:
Giải thích các bước giải:
a)(2x−2−2x+2).x2+4x+48(2x−2−2x+2).x2+4x+48
= 2(x+2)−2(x−2)(x−2)(x+2).(x+2)282(x+2)−2(x−2)(x−2)(x+2).(x+2)28
= 2x+4−(2x−4)(x−2)(x+2).(x+2)282x+4−(2x−4)(x−2)(x+2).(x+2)28
= 8(x−2)(x+2).(x+2)288(x−2)(x+2).(x+2)28
= x+2x−2x+2x−2
b) x+24x+24.x2−36x2+x−2x+24x+24.x2−36x2+x−2
= x+24(x+6).(x−6)(x+6)(x+2)(x−1)x+24(x+6).(x−6)(x+6)(x+2)(x−1)
= x−64(x−1)x−64(x−1)
2)
a)(x2−5):2x+103x−7(x2−5):2x+103x−7
= (x−5)(x+5).3x−72(x+5)(x−5)(x+5).3x−72(x+5)
= (x−5)(3x−7)2(x−5)(3x−7)2
b)(3x1−3x+2x3x+1):6x2+101−6x+9x2(3x1−3x+2x3x+1):6x2+101−6x+9x2
= 3x(3x+1)+2x(1−3x)(3x+1)(1−3x).(3x−1)22(3x2+5)3x(3x+1)+2x(1−3x)(3x+1)(1−3x).(3x−1)22(3x2+5)
= 3x2+2x(3x+1)(1−3x).(3x−1)22(3x2+5)3x2+2x(3x+1)(1−3x).(3x−1)22(3x2+5)
= x(3x+2)−(3x+1)(3x−1).(3x−1)22(3x2+5)x(3x+2)−(3x+1)(3x−1).(3x−1)22(3x2+5)
= x(3x+2)(3x−1)−2(3x+1)(3x2+5)