$\left \{ {{\frac{3}{2}x+\frac{3}{2}y=1} \atop {\frac{1}{3}x+\frac{1}{4}y}=\frac{1}{5}} \right. $
⇔ $\left \{ {{\frac{3}{2}x+\frac{3}{2}y=1} \atop {2x+\frac{3}{2}y=\frac{6}{5}}} \right.$
⇔ $\left \{ {{\frac{-1}{2}x=\frac{-1}{5}} \atop {2x+\frac{3}{2}y=\frac{6}{5}}} \right.$
⇔ $\left \{ {{x=\frac{2}{5}} \atop {\frac{3}{2}y=\frac{2}{5}}} \right.$
⇔ $\left \{ {{x=\frac{2}{5}} \atop {y=\frac{4}{15}}} \right.$
Vậy hpt có nghiệm (x;y) = ($\frac{2}{5}$; $\frac{4}{15}$)