$y=x^2.\sqrt{x\sin x}$
$y'=(x^2)'\sqrt{x\sin x}+x^2(\sqrt{x\sin x})'$
$=2x\sqrt{x\sin x}+x^2.(\sqrt{x})'.\sqrt{\sin x}+x^2\sqrt{x}(\sqrt{\sin x})'$
$=2x\sqrt{x\sin x}+\dfrac{x^2}{2\sqrt{x}}\sqrt{\sin x}+x^2\sqrt{x}.\dfrac{(\sin x)'}{2\sqrt{\sin x}}$
$=2x\sqrt{x\sin x}+\dfrac{x\sqrt{x}}{2}\sqrt{\sin x}+x^2\sqrt{x}\dfrac{\cos x}{2\sqrt{\sin x}}$