Đáp án:
\[\left\{ \begin{array}{l}
m = 2\\
n = - 4
\end{array} \right.\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{z_1} = {x_1} + {y_1}i\\
{z_2} = {x_2} + {y_2}i
\end{array} \right. \Rightarrow \,\,\,\,\,\,{z_1} = {z_2} \Leftrightarrow \left\{ \begin{array}{l}
{x_1} = {x_2}\\
{y_1} = {y_2}
\end{array} \right.\\
\left\{ \begin{array}{l}
z = m + 3i\\
z' = 2 - \left( {n + 1} \right)i
\end{array} \right.\\
z = z' \Leftrightarrow \left\{ \begin{array}{l}
m = 2\\
3 = - \left( {n + 1} \right)
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = 2\\
n = - 4
\end{array} \right.
\end{array}\)
Vậy \(\left\{ \begin{array}{l}
m = 2\\
n = - 4
\end{array} \right.\)