Đáp án:
\(\left\{ \begin{array}{l}
x = 5\\
\left[ \begin{array}{l}
y = 2\\
y = - 2
\end{array} \right.
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne 3;y \ne \pm \frac{3}{2}\\
\left\{ \begin{array}{l}
\frac{8}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5\\
\frac{4}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{8}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5\\
- \frac{4}{{x - 3}} - \frac{1}{{2\left| y \right| - 3}} = - 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{{8 - 4}}{{x - 3}} = 5 - 3\\
\frac{8}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\frac{4}{{x - 3}} = 2\\
\frac{8}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x - 3 = 2\\
\frac{8}{{x - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\frac{8}{{5 - 3}} + \frac{1}{{2\left| y \right| - 3}} = 5
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\frac{1}{{2\left| y \right| - 3}} = 5 - 4 = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
2\left| y \right| - 3 = 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
2\left| y \right| = 4
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x = 5\\
\left[ \begin{array}{l}
y = 2\\
y = - 2
\end{array} \right.
\end{array} \right.\left( {TM} \right)
\end{array}\)