`A= 1/(2^2) + 1/(4^2)+ 1/(6^2)+...+ 1/(100^2)`
`A=1/(2^2 .1) + 1/(2^2 . 2^2) + 1/(2^2 . 2^3) +...+ 1/(2^2 . 50^2)`
`A= 1/(2^2) . ( 1/1 + 1/(2^2) + 1/(3^2) +...+ 1/(50^2))`
`=> 1/(2^2) + 1/(3^2) +...+ 1/(50^2) < 1/(1.2)+ 1/(2.3)+...+ 1/(49.50)``
`=> A < 1/(2^2)(1/(1.2) + 1/(2.3) +...+ 1/(49.50))`
`=> A < 1/4 ( 1+ 1 - 1/2 + 1/2 - 1/3 +...+ 1/49 - 1/50)`
`=> A < 1/4 ( 1+ 1 - 1/50)`
`=> A < 1/4 ( 2 - 1/50)` mà `2 - 1/50 < 2`
`=> A < 1/4 .2`
`=> A < 1/2 ( đpcm)`