Đáp án:
`=49/50`
Giải thích các bước giải:
Có: `1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+..+99)`
`=1/3+1/6+1/10+...+1/([(99+1).99]:2)`
`=1/3+1/6+1/10+...+1/4950`
`=2.(1)/2.(1/3+1/6+1/10+...+1/4950)`
`=2.(1/6+1/12+1/20+...+1/9900)`
`=2.(1/2.3+1/3.4+1/4.5+...+1/99.100)`
`=2.(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)`
`=2.(1/2-1/100)`
`=2.(49)/100`
`=49/50`