Đáp án:
Giải thích các bước giải:
`C=1/2^2+1/2^4+1/2^6+...+1/2^50`
`=>2^2C=2^2.(1/2^2+1/2^4+1/2^6+...+1/2^50)`
`=>4C=1+1/2^2+1/2^4+...+1/2^48`
`=>4C-C=(1+1/2^2+1/2^4+...+1/2^48)-(1/2^2+1/2^4+1/2^6+...+1/2^50)`
`=>3C=1-1/2^50`
`=>`$C=\dfrac{1-\dfrac{1}{2^{50}}}{3}$
`2`.
`P=1/2^2+1/3^2+1/4^2+...+1/100^2`
`=>P<1/1.2+1/2.3+1/3.4+...+1/99.100`
`=>P<1-1/100<1`
`=>P<1`
`=>` Vì `1/2^2+1/3^2+...+1/100^2>0`
`=>P` không phải số nguyên.